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Abstract

A time domain method is proposed in which the parameters of a crack in a structural member are
identified from strain or displacement measurements. The crack is modeled as a discrete open crack
represented mathematically by the Dirac delta function. The dynamic responses are calculated basing on
modal superposition. In the inverse analysis, optimization technique coupled with regularization on the
solution is used to identify the crack(s). The formulation for identification is further extended to the case of
multiple cracks. A general orthogonal polynomial function is used to generate the derivatives of the strain
or displacement time responses to eliminate the error due to measurement noise. Computation simulations
with sinusoidal and impulsive excitations on a beam with a single crack or multiple cracks show that the
method is effective for identifying the crack parameters with accuracy. The proposed identification
algorithm was also verified experimentally from impact hammer tests on a beam with a single crack.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Inspection of the structural components for damage is important for making decision on the
maintenance program of the structure. System identification is an important tool in the dynamic
identification for such purpose. It has gained increasing attention from the scientific community
and there has been a lot of research in the last two decades. A lot of work has been published in
the area of damage detection and a variety of methods has been developed. These methods are
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

r mass density of the beam material
A cross-sectional area
h0 the height of the beam
b the width of the beam
c the viscous damping of the beam
PðtÞ the external exciting force
E Young’s modulus
I0 the moment of inertia of the beam

cross-section
Id the moment of inertia of the beam

cross-section at the crack

T kinetic energy of the beam
U strain energy
W work done due to the external force
W c work done due to the viscous damping
yðx; tÞ transverse displacement of the beam
Y iðxÞ the ith mode shape of the beam
qiðtÞ modal coordinate
M modal mass matrix
C modal damping matrix
K modal stiffness matrix
K 0 modal stiffness loss due to the crack
N number of modes used
Nf number of the polynomial terms used
l regularization parameter
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mainly based on the relationship between the dynamic characteristics, such as the natural
frequencies [1,2] or mode shapes [3] and the damage parameters like the crack depth and its
location. It is noted that the presence of a crack in a structural member introduces a local
flexibility affecting its responses to load.

A variety of crack models can be found in the literature modeled as a spring [1,4], an elastic
hinge [3,5], a cut-out slot [6], a pair of concentrated moment couple [7,8], a zone with a reduced
Young’s modulus [9], or mathematically, as a semi-empirical damage function describing the
stress and strain distribution in the volume of the cracked beam [10,11]. The crack has also been
modeled as a spring with bilinear stiffness [12]. Crack function models were also developed [13] to
model the crack in more details. Recent researches in this area also include beams with breathing
cracks [2] and the modeling on the nonlinearity of a beam with a number of breathing cracks [14].

Most of the damage identification problems are solved in the frequency domain. Change in
natural frequencies is one of the ‘‘classical’’ damage indicators. Cawley and Adams [15] are among
the first ones to detect damage in elastic structure by using natural frequencies. On the basis of
changes in the natural frequencies, Messina et al. [16] calculated the Damage Location Assurance
Criterion, which was used to identify single defect and was later extended to identify multiple
damage sites [17]. Also many publications have used the mode shape measurements to detect
damage. Pandey et al. [18] used complete mode shapes from the undamaged and damaged states
to identify both the location and the extent of damage by solving a system of linear equations.
Shi and Law [19] calculated the modal strain energy change before and after the occurrence of
damage as indicator to identify damage. These methods need information from the measured
mode shapes.

More recently damage detection in time domain has been studied by several researchers.
Cattarius and Inman [20] used the time histories of vibration response of the structure to identify
damage in smart structures. Koh et al. [21] studied the structural stiffness parameters of a multi-
storey framework in a system identification approach. Majumder and Manohar [22] made use of
the excitation from passing vehicles on top of a bridge beam for the damage detection in beam
structures.
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The present study explicitly includes the crack damage in the identification equation of a beam
structure. A crack with a constant depth is modeled with a Dirac delta function, and a method is
proposed to identify the crack parameters using the dynamic responses. The method is developed
based on the modal superposition and optimization technique in combination with regularization
on the solutions to smooth out the large variations in the identified results. Either the
displacement or the strain measurement can be used to identify the crack, and only the first few
modes from several measuring points are required for the identification. Identification of both the
single crack and multiple cracks are studied numerically with sinusoidal or impulsive excitation.
The identification algorithm is later verified using experimental results from a beam with a
single crack.
2. Direct problem

2.1. Equations of motion

A single-span uniform Euler–Bernoulli beam with a single-sided transverse crack subjected to
an excitation force PðtÞ acting at xp from the left support is shown in Fig. 1. The crack is assumed
to be fully open and has a fixed depth hc at a location distant xc from the left support. The
equation of motion of the beam can be written as

rA
q2yðx; tÞ

qt2
þ c

qyðx; tÞ

qt
þ ðEI0 � EIcdðx � xcÞÞ

q2

qx2

q2yðx; tÞ

qx2

� �
¼ PðtÞdðx � xpÞ; (1)

where r is the mass density of the beam, A is the cross-sectional area, c is the damping of the
beam, E is the Young’s modulus of material, I0 is the moment of inertia of the beam cross-section,
Ic is the reduction of the moment of inertia of beam cross-section at the crack defined as
b=12½h3

0 � ðh0 � hcÞ
3
�; yðx; tÞ is the transverse displacement function of the beam, dðxÞ is the

Dirac delta function and b is the width of the beam. The beam is assumed to be at rest at the
beginning of the identification, and the damping effect originated from the crack is not
considered.
F (t)

cx

L  

px

x

Fig. 1. The cracked beam model.
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The kinetic energy T, the strain energy U, the work done W c due to the viscous damping in the
beam, and the work done W due to the external force can be expressed as

T ¼
1

2

Z L

0

rA
qyðx; tÞ

qt

� �2

dx; (2)

U ¼
1

2

Z L

0

EIðxÞ
q2yðx; tÞ

qx2

� �2

dx ¼
1

2

Z L

0

½EI0 � EIcdðx � xcÞ�
q2yðx; tÞ

qx2

� �2

dx; (3)

W c ¼

Z L

0

yðx; tÞc
qyðx; tÞ

qt
dx; (4)

W ¼

Z L

0

PðtÞdðx � xpÞyðx; tÞdx: (5)

Expressing the transverse displacement of the beam yðx; tÞ in modal coordinates

yðx; tÞ ¼
Xn

i¼1

Y iðxÞqiðtÞ; (6)

where Y iðxÞ can be obtained from the assumed mode shapes. We have

T ¼
1

2

Z L

0

rA
Xn

i¼1

Y iðxÞ _qiðtÞ
Xn

j¼1

Y jðxÞ _qjðtÞ

" #
dx ¼

1

2

Xn

i¼1

Xn

j¼1

_qiðtÞmij _qjðtÞ; (7)

U ¼
1

2

Z L

0

½EI0 � EIcdðx � xcÞ�
Xn

i¼1

Y 00
i ðxÞqiðtÞ

Xn

j¼1

Y 00
j ðxÞqjðtÞ

 !
dx

¼
1

2

Z L

0

EI0

Xn

i¼1

Y 00
i ðxÞqiðtÞ

Xn

j¼1

Y 00
j ðxÞqjðtÞdx

�
1

2

Z L

0

EIcdðx � xcÞ
Xn

i¼1

Y 00
i ðxÞqiðtÞ

Xn

j¼1

Y 00
j ðxÞqjðtÞdx

¼
1

2

Xn

i¼1

Xn

j¼1

qiðtÞkijqjðtÞ �
1

2

Xn

i¼1

Xn

j¼1

qiðtÞk
0
ijqjðtÞ; ð8Þ

W c ¼

Z L

0

c
Xn

i¼1

Y iðxÞqiðtÞ
Xn

j¼1

Y jðxÞ _qjðtÞdx ¼
Xn

i¼1

Xn

j¼1

qiðtÞcij _qjðtÞ; (9)

W ¼

Z L

0

PðtÞdðx � xpÞ
Xn

i¼1

Y iðxÞqiðtÞdx ¼
Xn

i¼1

PðtÞY iðxpÞqiðtÞ ¼
Xn

i¼1

f iðtÞqiðtÞ (10)
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and

mij ¼

Z L

0

rAY iðxÞY jðxÞdx; kij ¼

Z L

0

EI0Y 00
i ðxÞY

00
j ðxÞdx;

k0
ij ¼

Z L

0

EIcdðx � xcÞY
00
i ðxÞY

00
j ðxÞdx ¼ EIcY

00
i ðxcÞY

00
j ðxcÞ;

cij ¼

Z L

0

cY iðxÞY jðxÞdx; f iðtÞ ¼ PðtÞY iðxpÞ:

Substituting Eqs. (7)–(10) into the Lagrange equation

d

dt

qT

q _q

� �
�
qT

qq
þ
qU

qq
�
qW c

qq
¼

qW

qq
(11)

we obtain Xn

j¼1

mij €qjðtÞ þ
Xn

j¼1

cij _qjðtÞ þ
Xn

j¼1

ðkij � k0
ijÞqjðtÞ ¼ f iðtÞ i ¼ 1; 2; . . . ; n: (12)

Writing Eq. (12) in matrix form

½M�f €qðtÞg þ ½C�f _qðtÞg þ ð½K � � ½K 0�ÞfqðtÞg ¼ fF ðtÞg; (13)

where

½M� ¼ fmij ; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; ng; ½C� ¼ fcij; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; ng;

½K � ¼ fkij ; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; ng; ½K 0� ¼ fk0
ij ; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; ng;

fqðtÞg ¼ fq1ðtÞ; q2ðtÞ; . . . ; qnðtÞg
T; fFðtÞg ¼ ff 1ðtÞ; f 2ðtÞ; . . . ; f nðtÞg

T: (14)

The modal responses €q; _q; q of the beam can then be obtained by direct integration, say, with the
Newmark method [23].
2.2. The assumed mode shapes

The general form of the vibration mode for a uniform Euler beam can be written as

Y ðxÞ ¼ A1 cos bx þ A2 sin bx þ A3 coshbx þ A4 sinhbx; (15)

where A1; A2; A3; A4 are constants and b is a frequency parameter. The vibration modes for an
Euler beam with simply supported ends are obtained as

Y iðxÞ ¼ A2 sin
ipx

L
: (16)

It is noted that the effect of the crack on the vibration modes is very small [24] and it is not
considered in this work.
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2.3. Accuracy of the crack model

To validate the proposed crack model, the fundamental frequencies of the beam with the
proposed crack model are compared with the results by Fernandez-Saez et al. [24]. They proposed
a simplified method of evaluating the fundamental frequency for the bending vibrations of
cracked Euler–Bernoulli beams with the crack in a beam modeled as an elastic spring. A closed
form solution on the fundamental frequency was given for the simply supported cracked beam.

A 30m long simply supported Euler–Bernoulli beam with an open crack at 4m from the left
support is studied. The parameters of the beam are: rA ¼ 5:0 � 103 kg=m; E ¼ 5 � 1010 N=m2;
L ¼ 30m; b ¼ 0:6m; and h0 ¼ 1:0m: Fig. 2 shows the variation of the ratio of fundamental
frequency with crack to the original frequency with no crack from different ratio of crack depth.
The results from both models are close to each other except for those from midspan, with the
present model giving a slightly larger difference from those by Fernandez-Saez et al. [24].

Sinha et al. [25] proposed an open crack model in an Euler–Bernoulli beam element with a
modified local flexibility of the beam in the vicinity of the crack. The same beam for the above
study is investigated here with an excitation force of f ðtÞ ¼ 40; 000½1þ 0:1 sinð10ptÞ þ
0:05 sinð40ptÞ� N applied at 7m from the left support. The crack is at 4m from the left support
with 0.25m depth. The displacement responses at the 1

4
span and the middle point of the cracked

beam were compared with the existing solution [25] as shown in Fig. 3. The responses obtained
from both models are very close to each other indicating the accuracy of the proposed model.
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Fig. 2. The variation of the fundamental frequency corresponding to different crack location (—,[24], proposed, (a)

xc ¼ 4m; (b) xc ¼ 7m; (c) xc ¼ 15m; (d) xc ¼ 25m:
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Fig. 3. The displacement responses of cracked beam for different crack model.
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3. Inverse problem

3.1. Identification from measured displacements

Expressing the measured displacements yðxm; tÞ in modal coordinates

yðxm; tÞ ¼
XN

i¼1

Y iðxÞqiðtÞ ðm ¼ 1; 2; . . . ;NmÞ; (17)

where Nm is the number of measurement locations; fyðxm; tÞ; m ¼ 1; 2; . . . ;Nmg are the
displacements at xm: Eq. (17) can be re-written as

fygNm�1 ¼ ½Y �Nm�NfqgN�1; (18)

where fygNm�1 is the vector of displacements at Nm measurement locations. The vector of
generalized coordinates can be written using the least-squares pseudo-inverse as

fqgN�1 ¼ ð½Y �TN�Nm
½Y �Nm�NÞ

�1
½Y �TN�Nm

fygNm�1: (19)

The modal velocity and acceleration of the beam responses can be obtained from Eq. (19) by
numerical methods. However, if the central difference method is used to calculate the modal
velocity and acceleration, it will lead to large approximation error. Therefore the generalized
orthogonal polynomial [26] is used to model the displacement so as to avoid the approximation
error,

yðxj; tÞ ¼
XNf

i

aiTiðtÞ; (20)

where yðxj; tÞ is the approximated displacement at the jth measuring point. The velocity and
acceleration are then approximated by the first and second derivatives of the orthogonal
polynomial. The orthogonal polynomial used in this work is shown in Appendix A.
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Writing in matrix form, we have,

fygNm�1 ¼ ½A�Nm�Nf fTgNf�1; f _ygNm�1 ¼ ½A�Nm�Nf f
_TgNf�1;

f €ygNm�1 ¼ ½A�Nm�Nf f
€TgNf�1; ð21Þ

where ½A�Nm�Nf ; fTgNf�1; f _TgNf�1; f €TgNf�1 are the coefficient matrix of the polynomial, the
orthogonal polynomial matrix, the first and second derivatives of the orthogonal polynomial
variable matrix respectively. Nf is the order of the orthogonal polynomial. The coefficient matrix
½A� can be obtained by the least-squares method from Eq. (21) as

½A�Nm�Nf ¼ fygNm�1fTgT1�Nf ðfTgNf�1fTgT1�Nf
Þ
�1: (22)

Substituting matrix ½A� into Eq. (21), we can get f _yg and f €yg: And substituting fyg; f _yg; f €yg and the
derivatives of fTg into Eq. (19), we can obtain the modal displacement q, modal velocity _q and
modal acceleration €q: Substituting further q, _q and €q into Eq. (13), we have

K 0q ¼ M €q þ C _q þ Kq � F ðtÞ: (23)

The elements of matrix K 0 are obtained as follows with the first-order approximation

k0
ij ¼ EIcY

00
i ðxcÞY

00
j ðxcÞ �

Ebh2
0hc

4
Y 00

i ðxcÞY
00
j ðxcÞ: (24)

The inverse problem here is how to find the crack location and the crack depth from Eq. (23).
When at time ti; we have the following from Eqs. (23) and (24).

½K 0�

q1ðtiÞ

q2ðtiÞ

..

.

qnðtiÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼ ½M�

€q1ðtiÞ

€q2ðtiÞ

..

.

€qnðtiÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ ½C�

_q1ðtiÞ

_q2ðtiÞ

..

.

_qnðtiÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ ½K�

q1ðtiÞ

q2ðtiÞ

..

.

qnðtiÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

�

f 1ðtiÞ

f 2ðtiÞ

..

.

f nðtiÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: (25)

Rewriting Eq. (25), and let

Jðxc; hcÞ ¼ ½K 0�

q1ðtiÞ

q2ðtiÞ

..

.

qnðtiÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

� ½M�

€q1ðtiÞ

€q2ðtiÞ

..

.

€qnðtiÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ ½C�

_q1ðtiÞ

_q2ðtiÞ

..

.

_qnðtiÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ ½K�

q1ðtiÞ

q2ðtiÞ

..

.

qnðtiÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

�

f 1ðtiÞ

f 2ðtiÞ

..

.

f nðtiÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

2
666664

3
777775 (26)

or

Jðxc; hcÞ ¼ AðpÞ � d; (27)

where Jðxc; hcÞ is an error vector, and AðpÞ represents the first term of the right-hand side of
Eq. (26), and d represents the second term, the vector p contains the unknown crack location and
depth parameters.
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Now the problem becomes a nonlinear optimization problem with two unknown parameters:
the crack depth hc and the location xc: This is equivalent to minimizing the error function

min kJðxc; hcÞk
2 ¼ min kAðpÞ � dk2: (28)

Like many inverse problems, this is an ill-conditioned problem, and regularization method is
adopted to provide bounds to the solution. A regularization term l is introduced into the right-
hand side of Eq. (28)

min kJðxc; hcÞk
2 ¼ minfkAðpÞ � dk2 þ lkp � p0k

2g; (29)

where l40 and p0 is the vector containing the a priori information on the crack location and
depth at time ti:

The following strategy is proposed to locate approximately the crack. It is known that when the
identified crack location does not match the real location, the identified crack depth exhibits large
fluctuations due to ill-conditioning in the solution. Therefore, the variance of the identified crack
depth time history from using different initial crack location in the calculation is taken as an
indicator. The correct initial guess on the crack location should correspond to the smallest
variance in the identified crack depth time history.

The crack identification can be realized through the following steps: the mode shape Y iðxÞ are
obtained from Eq. (16). The modal displacement q, modal velocity _q and modal acceleration €q are
computed from Eq. (21). Then by minimizing the error function J, we can get the crack location
xc and the crack depth hc:
3.2. Identification from measured strains

The strain at the bottom of a rectangular beam with depth h0 can be expressed in terms of the
generalized coordinates as

�ðxm; tÞ ¼ �
h0

2

XN

i¼1

Y 00ðxmÞqiðtÞ ðm ¼ 1; 2; . . . ;NmÞ; (30)

where Nm is the number of measurement locations; f�ðxm; tÞ;m ¼ 1; 2; . . . ;Nmg are the strains at
xm: Eq. (30) can be written as

f�gNm�1 ¼ �
h0

2
½Y 00�Nm�NfqgN�1; (31)

where f�gNm�1 is the vector of strains at Nm measurement locations. Again the strain can be
approximated by the orthogonal polynomial TðtÞ as

�ðxj; tÞ ¼
XNf

i

aiTiðtÞ; (32)

where �ðxj; tÞ is the strain at the jth measuring point. The rest of the computation in the
identification is similar to those for identification from measured displacements mentioned above.
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4. Multiple cracks identification

The proposed formulation for single crack can be extended to identify Nc single-sided
transverse cracks in the beam, and Eq. (1) becomes

rA
q2yðx; tÞ

qt2
þ c

qyðx; tÞ

qt
þ EI0 �

XNc

k¼1

EðIcÞkdðx � ðxcÞkÞ

 !
q2

qx2

q2yðx; tÞ

qx2

� �

¼ PðtÞdðx � xpÞ: ð33Þ

Matrix K 0 in Eq. (14) becomes

K 0 ¼
XNc

k¼1

ðk0
ijÞk ði ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; nÞ; (34)

where ðk0
ijÞk is the matrix k0

ij in Eq. (24) for the kth crack, and Eq. (25) becomes

Ebh2
0

4

PNc

k¼1

Y 00
1ððxcÞkÞY

00
1ððxcÞkÞhck

PNc

k¼1

Y 00
1ððxcÞkÞY

00
2ððxcÞkÞhck � � �

PNc

k¼1

Y 00
1ððxcÞkÞY

00
nððxcÞkÞhck

PNc

k¼1

Y 00
2ððxcÞkÞY

00
1ððxcÞkÞhck

PNc

k¼1

Y 00
2ððxcÞkÞY

00
2ððxcÞkÞhck � � �

PNc

k¼1

Y 00
2ððxcÞkÞY

00
nððxcÞkÞhck

..

. ..
. ..

. ..
.

PNc

k¼1

Y 00
nððxcÞkÞY

00
1ððxcÞkÞhck

PNc

k¼1

Y 00
nððxcÞkÞY

00
2ððxcÞkÞhck � � �

PNc

k¼1

Y 00
nððxcÞkÞY

00
nððxcÞkÞhck

2
66666666666664

3
77777777777775

�

q1ðtiÞ

q2ðtiÞ

..

.

qnðtiÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ ½M�

€q1ðtiÞ

€q2ðtiÞ

..

.

€qnðtiÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ ½C�

_q1ðtiÞ

_q2ðtiÞ

..

.

_qnðtiÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
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: ð35Þ

The crack identification formulation will be similar to the single-crack identification, and both
the displacement and strain measurements can be used to identify multiple cracks in the beam.
5. Simulation results

5.1. Single-crack identification

A 30m long simply supported Euler–Bernoulli beam with an open crack is studied. The first six
natural frequencies of the uncracked beam are: 1.23, 4.94, 11.11, 19.75, 30.86 and 44.43Hz. The
damping ratios for these modes are all equal to 0.02. The external exciting force is

f ðtÞ ¼ 40; 000½1þ 0:1 sinð10ptÞ þ 0:05 sinð40ptÞ�N
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and is applied at 7m from the left support. The dynamic components of the force are close to the
second and fourth modal frequencies of the beam. The parameters of the beam are: rA ¼

5:0� 103 kg=m; E ¼ 5� 1010 N=m2; L ¼ 30m; b ¼ 0:6m; and h0 ¼ 1:0m: White noise is added to
the calculated displacements and strains to simulate the polluted measurements as follows

y ¼ ycalculated þ Ep � Noise � varðycalculatedÞ;

� ¼ �calculated þ Ep � Noise � varð�calculatedÞ;

where y and � are the vectors of polluted displacement and strain respectively, Ep is the noise level,
Noise is a standard normal distribution vector with zero mean and unit standard deviation; varð�Þ
is the variance of the time history, ycalculated and �calculated are the vectors of calculated displacement
and strain. Noise levels (0%, 5% and 10%) are studied in this paper. In the numerical simulation,
the crack locates at 4m from the left support with the crack depth hc equals 0.25m.

The first three modes are used in the calculation. Measured strains at 1
4
L; 1

2
L and 3

4
L are used in

the identification. The sampling frequency is 100Hz, which is larger than two times the highest
frequency of interest at 44.43Hz.

Fig. 4 shows the plot of variance of the identified crack depth time history against the initial
crack location. The crack depth is taken as zero in the search for the crack location. The optimal
regularization parameter l was found different for different initial crack location, and it is taken
equal to 200 for the preparation of Fig. 4. The results confirm that the smallest variance
corresponds to the correct crack location. In fact a wide range of l from 20 to 200 gives results
similar to Fig. 4.

The initial crack location is then set at 4m as from Fig. 4 with an initial zero crack depth. The
regularization parameter is plotted against the variance of the identified crack location in Fig. 5.
The variance gradually increases with a reduction in the parameter until a point where there is a
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Fig. 4. The variance of the identified crack location (5% noise).
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sudden jump in the variance. The value of l corresponds to the point before this sudden jump
ðl ¼ 20Þ is taken as the optimal regularization parameter.

Fig. 6 shows the identified results from measured strains without any noise and with 10% noise
respectively. There is little difference in the identified crack depth time histories from both cases.
The polluted measurements have been approximated with orthogonal polynomial functions with
20 terms, and the velocity and accelerations subsequently obtained by direct differentiating the
functions are compared with those from the measurements in Fig. 7, and they are found matching
each other very well. Larger errors are only found in the accelerations.
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The effect of modal truncation on the identification is also studied. Fig. 8 shows the identified
results from using the first three and six modes. And the number of measuring points is taken
equal to the number of vibration modes with the measuring points evenly distributed on the beam.
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The sampling frequency is 100Hz, and 5% noise level is included in measurement. It can be seen
from the figure that the identification accuracy increases with increasing number of modes in the
identification, but the curves obtained from using only three modes are still varying close to the
true curves.

Large fluctuations are found in the identified crack depth within the first and final quarters of
the time history in all the above cases. This can be explained by observing the acceleration and
velocity obtained from the orthogonal polynomial functions in Fig. 7. Errors are found in these
time derivatives near the beginning and end of the time histories while those in the middle halve
are well approximated by the polynomials. This is the major source of error in the identification
and is due to the discontinuity of the time responses with the excitation force. The identification
error is found to decrease when more modes are used.
5.2. Multi-cracks identification

The same simply supported Euler–Bernoulli beam with three open cracks is studied. The crack
locations are at 4, 14 and 24m from the left support. The open crack depths are arbitrarily taken
as hc1 ¼ 0:2m; hc2 ¼ 0:25m and hc3 ¼ 0:2m:

The first 6 modes and 6 displacement measurements are used in the identification, and 5% noise
is included. The measuring points are evenly distributed on the beam, and the sampling
frequency is 100Hz. The same sinusoidal excitation force as for single-crack identification
is used in this study. The strategy for searching the optimal location for the single-crack
identification is not applicable for multiple cracks because of the existence of numerous local
minima in the search for the global minimum variance. This strategy assumes that the
desired locations are close to the nominal initial values and that there are no spurious solutions
in the neighborhood of the correct solution. These assumptions are not valid in this case because
the nominal initial values on the locations are not known. Hjelmstad [27] has used a random
starting point scheme in conjunction with the objective minimization algorithm to find all the
multiple minima of the parameter estimation problem. Pothisiri and Hjelmstad [28] have also
proposed a method to find a near-optimal measurement set for parameter estimation. Both of
these methods could be applied to the present problem to find solutions on the initial crack
locations.

In this paper the true locations of the cracks are included in the identification, and the optimal
regularization parameter is 100 in this study. Fig. 9 shows the identification results on the three
cracks, the first two are found almost overlapping with the true curve while the third one varies
around the true curve. Large fluctuations are found at both ends of the time history similar to
those found in the single-crack identification.
5.3. Crack identification from an impulsive force

A periodic impulsive force is applied on the same beam as for the above study with a period of
1 s, and the duration of the force is 0.1 s. The magnitude of the force is 9500N simulating the
impact excitation produced by a 125 kg weight free falling for 1m on the beam. The effect of the
falling mass after the impact is ignored. The force is applied at 7m from the left support and it can
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be expressed in the following form:

f ðtÞ ¼
190; 000ðt � 0:05Þ 0:05ptp0:1;

190; 000ð0:15� tÞ 0:1ptp0:15:

(

A Fourier series is used to simulate the force, i.e.

f ðtÞ ¼ a0 þ
X1
k¼1

ak cos
2kpt

T
þ
X1
k¼1

bk sin
2kpt

T
;

where

a0 ¼
1

T

Z T

0

f ðtÞdt;

ak ¼
2

T

Z T

0

f ðtÞ cos
2kpt

T
dt and bk ¼

2

T

Z T

0

f ðtÞ sin
2kpt

T
dt:

Forty terms in the series are used to include the higher frequency components in the force. The
crack location and crack depth are the same as for the single-crack identification. The
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Table 1

Comparison with existing method

Single crack Depth of crack (m)

Location (m) Depth (m) Crack 1 Crack 2 Crack 3

True value 4.0 0.25 0.20 0.25 0.20

Sinha et al. [25] 4.16/4% 0.31/24% 0.235/17.5% 0.21/�16% 0.237/17.5%

Proposed method 4.03/0.75% 0.23/�8% 0.195/�2.5% 0.254/1.6% 0.182/�9%

Note: �/� denotes the identified value and percentage of error.
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regularization parameter is 20. The sampling frequency is 100Hz, and the first 6 modes and 6
displacement measurements are used in the identification. Five percent noise is included in the
identification. The measuring points are evenly distributed on the beam. Fig. 10 shows that the
identified crack depth is close to the true one. Results not shown here indicate that the identified
result is less dependent on the sampling rate. This is because the impulsive force consists of a wide
spectrum of frequency components as an excitation force, but the majority of the responses come
from the first few modes of the structure which can be easily collected using a low sampling rate.

5.4. Comparison with existing method

The accuracy of identification results is compared with those from Sinha et al. [25] for the cases
of single crack and multiple cracks under sinusoidal excitation and results from both methods are
listed in Tables 1 and 2. Since the parameters are identified in a time series, the data obtained from
averaging the identified values during the period 0.1–0.6 s are taken as the results. This is to avoid
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Table 2

Experimental modal frequencies (Hz) of the cracked beam

Crack depth and location Mode number

1 2 3 4 5

No crack 22.868 62.763 123.049 203.236 303.452

hc ¼ 3mm at 1720mm 22.797 62.622 122.559 202.271 302.490

hc ¼ 6mm at 1720mm 22.766 62.378 121.704 201.050 301.514

hc ¼ 9mm at 1720mm 22.766 61.890 119.995 198.486 299.500
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the errors close to the beginning and end of the time histories due to the discontinuity of the time
response with the excitation force. The propose method is found giving much better accuracy with
5% or 10% noise in the measurement than Sinha et al. without any measurement noise both in the
location and crack depth. It is also noted that the crack parameters are identified in the time
domain, and this means that the proposed method can be used to identify breathing cracks in the
beam with time varying parameters.
6. Laboratory verification

Experimental results are used to verify the algorithm developed for the crack identification. The
parameters of the test sample are: L ¼ 2:1m; b ¼ 0:025m; h0 ¼ 0:019m; E ¼ 2:07� 1011 N=m2;
r ¼ 7:832� 103 kg=m3: The crack is at 1.72m from the left free end, and is created using a
machine saw with 1.3mm thick cutting blade. Five measured strains were used to identify the
crack in the beam which were located at 0.6, 0.9, 1.1, 1.4 and 1.95m from the left free end
respectively. An impulsive force was applied with an impact hammer model B&K 8202 at 1.2m
from the left free end. The sampling frequency is 2000Hz, and the data record time duration is
1min. The data are re-sampled with a sampling frequency of 500Hz in the identification in order
to improve the computation efficiency. The first 5 natural frequencies of the intact and the
damaged beam with the crack depth at 3, 6 and 9mm are shown in Table 1. The frequencies do
not change much with damage in the first two modes. Fig. 11 shows a sample of the impulsive
force and the five measured strains when the crack depth is 6mm. Two hammer hits were applied
on the beam within this duration. It is noted that the measured strains from the beam are very
small with a maximum of approximately 60m at 1.1m.

Fig. 12 shows the identified results for the different crack depths. The first 4 modes are used in
the identification. And the regularization parameter l is 100. Due to the limitation of the
computer memory, only the first 7.0 s measured strains were used in the identification. The
location of the crack can be obtained from a study of the variance of the identified results as what
has been done in the simulation study. The identified crack depth time history fluctuates close to
the true value of the time history for all the cases. The identified crack depth for 9mm crack is
more accurate than those with smaller depth. It is noted that these results comes from two
hammer hits on the beam with very low level of dynamic responses. The identified results are
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believed to improve significantly with longer duration in the identification or if more hammer hits
are included within the time duration of computation.
7. Conclusion

This paper includes the crack damage in the identification equation of a beam structure. A
crack with a constant depth is modeled with a Dirac delta function, and a method is proposed to
identify the open crack in beam structures based on dynamic measurements in time domain. Only
several displacement or strain measurements and the first few modes are required in the crack
identification. The method is based on modal superposition and optimization technique with
regularization on the solution. Orthogonal polynomial function is used to approximate the
measured strain or displacement for a practical application with noisy measurements.
Computation simulations using sinusoidal and impulsive excitations on a beam with a single or
multiple cracks show that the method is effective to identify cracks and is much more
accurate than the method by Sinha et al. [25] from polluted measurements. Experimental results
also show that a few hammer hits could be used as the excitation source for the single-crack
identification.
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